edexcel "

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE
in Biology (6BI04) Paper 01
The Natural Environment and Species
Survival

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2016
Publications Code 46620_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (a)}$	1.\{antigen / bacteria / virus / pathogen\} \{binds / eq\} to B cell ; 2. $\{$ antigen / bacteria / virus / pathogen\} \{binds / eq\} to MHC (antigen) ; 3. Thelper \{lymphocytes / cells\} \{bind / eq\} (to B cell) ; 4. reference to cytokines (from T helper cells) ;	1 ACCEPT B cell is an antigen- presenting cell	

| Question
 Number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 (b) (i)}$ | mitosis; | (1) |

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (i i)}$	1. idea of sample of B cells from lymph nodes ; 2. reference to named stain e.g. (acetic) orcein ; 3. credit correct details of method for B cells e.g. heating / add $\{\mathrm{HCl} /$ acid \}; 4. idea of looking for mitotic features ;	1 ACCEPT from blood 2 ACCEPT acetocarmine, 3 ACCEPT schiff's, toluidine blue node	

| Question
 Number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 (c) (i)}$ | \mathbf{C} mitochondrion; | $\mathbf{(1)}$ |

| Question
 Number | Answer | Mark |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 (c) (\text { ii) }} \mathbf{C}$ nucleus; | $\mathbf{(1)}$ | |

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (c) (\text { iii) }}$	endoplasmic reticulum / ER ;	IGNORE smooth , rough ACCEPT RER / SER / ribosome	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(iv)	IF RER / SER HAS BEEN GIVEN AS ANSWER IN (iii): 1. \{protein synthesis / translation / eq\} occurs ; 2. on the ribosomes ; 3. idea that \{polypeptide / protein\} \{moves into / transported into\} the ER ; 4. to the Golgi apparatus / through the cytoplasm / eq ; IF GOLGI HAS BEEN GIVEN AS ANSWER IN (iii): 5. it modifies the protein / eq ; 6. credit example of modification e.g. addition of carbohydrate group ;	IF CYTOPLASM HAS BEEN GIVEN AS ANSWER IN (iii): apply either the RER OR Golgi Mps 1 ACCEPT description of translation 4 ACCEPT idea of folding into \{secondary / tertiary\} structure	

| 7. idea that antibody moved into vesicles; | |
| :--- | :--- | :--- |
| 8. exocytosis / eq ; | |
| IF RIBOSOME HAS BEEN GI VEN AS ANSWER I N | |
| (iii): | |
| 9. \{protein synthesis / translation / eq occurs ; | |
| 10. ribosome holds mRNA / eq ;
 11.ribosome holds two tRNA / eqs ;
 12.so that peptide bonds can form between (adjacent) amino
 acids; | |

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 (b) (i)}$	1. idea of little difference between the groups (at each incubation time) ; 2. idea of \{large / eq\} error bars ; 3. idea of \{overlapping / eq\} error bars ;	2 and 3 ACCEPT range bars	

Question Number	Answer	Additional Guidance	Mark
2(b)(ii)	1. idea that membrane \{receptors / proteins / glycosidic groups / eq\} interacts with bacteria ; 2. idea of \{pseudopodia formed around / macrophage surrounds\} the bacteria ; 3. idea that membranes (of pseudopodia) \{fuse / pinch off / eq\};	1 ACCEPT antibodies bind to both bacteria and macrophage / opsonisation $\mathbf{2 ~ I G N O R E ~ e n g u l f ~}$	
4. to form a vacuole (that contains the bacteria) / eq ;	4 ACCEPT vesicle, phagosome		
5. idea that \{change in shape / fusion /movement / eq\} of membrane is due to fluidity of membrane ; 6. caused by the \{movement of phospholipids / presence of cholesterol / eq \} ;	(4)		

Question Number	Answer	Additional Guidance	Mark
2(c)(i)	1. bacteriostatic antibiotics stop the bacteria from dividing / eq ; 2. bactericidal antibiotics \{kill / eq\} the bacteria ;	IGNORE description of mechanism $\mathbf{1 ~ A C C E P T}$ growing, replicating	

Question Number	Answer	Additional Guidance	Mark
2(c)(ii)	1. idea that viruses are non-living ;	ACCEPT viruses do not have the target sites for antibiotics	(1)

Question Number	Answer	Additional Guidance	Mark
3(a)	1. (rate at which) energy \{incorporated / eq\} into \{biomass / organic matter \} ;	1 NOT energy produced, converted, turned into ACCEPT organic material, organic molecules	
	2. by \{ plants / producers\} ;	$\mathbf{2}$ ACCEPT by photosynthesis	(2)

Question Number	Answer	Additional Guidance	Mark
3(b)	1. GPP \{depends / eq\} on photosynthesis ; 2. higher the temperature the higher the GPP / eq ; 3. enzymes in (photosynthesis / chemical reaction) \{can work faster / more kinetic energy / eq \} ;	(needs to be a clear statement 4. higher the \{precipitation / eq\} the higher the GPP / eq ; activity	4 ACCEPT converse

Question Number	Answer	Additional Guidance	Mark
3(c)	1. credit two values that lie in the range: greater than 0 to 11000 ; 2. appropriate justification based on temperature; 3. appropriate justification based on precipitation;	1NB (actual value is 126-3100) ACCEPT below 850	

Question Number	Answer	Additional Guidance	Mark
3(d)		Correct answer gains three marks	
	1. (trophic level 2) $2300-1500 / 800(\mathrm{~kJ}) ;$		
	2. (trophic level 3) $760-690 / 70(\mathrm{~kJ}) ;$		
$3 .((70 \div 800) \times 100)=8.8 / 8.75(\%)$	3 ALLOW ecf for two values used	(3)	

Question Number	Answer	Additional Guidance	Mark
4(a)	1. idea that enzyme activity decreases ; 2. credit calculated reduction e.g. $0.6,2.7,3.3 ;$ 3. idea that an increase in temperature results in increase in kinetic energy ;		
	4. causing changes in bonds (in the enzyme) / eq ; 5. idea that enzyme is denaturing (above 40 0 C$) ;$	5 ACCEPT fewer enzyme- substrate complexes NOT starts to denature	

Question Number	Answer	Additional Guidance	Mark
4(b)	RuBP / ribulose bisphosphate\} AND \{carbon dioxide /	ACCEPT Rubp / ribulose biphosphate	

Question Number	Answer	Mark
4(c)(i)	D valid;	(1)

Question Number	Answer	Mark
4(c)(ii)	\mathbf{C} measuring the activity at $1^{\circ} \mathrm{C}$ intervals between $35^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C} ;$	(1)

Question Number	Answer	Additional Guidance	Mark
5(a)	1. idea that cellulose is a \{polymer / polysaccharide\} of β glucose ; 2. reference to 1-4 glycosidic \{bonds / eq\} ; 3. idea that every other glucose is inverted ; 4. idea of cellulose molecules arranged \{parallel /as microfibrils\} ; 5. joined by hydrogen bonds / eq ;	1 ACCEPT made of β glucose monomers	

Question Number	Answer	Additional Guidance	Mark
5(b)	1. idea of \{lack of / very slow\} decomposition ; 2. due to lack of \{microorganisms / bacteria / fungi / named decomposer\} (involved in decomposition) / eq ; 3. as a result there are fewer enzymes / eq ; 4. low pH \{reduces enzyme activity / kills microorganisms leq\} ; 5. low oxygen affects respiration (of microorganisms) / eq ; 6. idea that bacteria cannot produce enzymes to breakdown sporopollenin ;	1 ACCEPT breakdown, decay 2 ACCEPT cannot survive	4 ACCEPT acidic

Question Number	Answer	Additional Guidance	Mark
5(c)	1. reference to double fertilisation ; 2. idea that one (haploid) male \{gamete / nucleus \} fuses with (haploid) \{egg cell / egg nucleus / female gamete / female nucleus\} ;	2 ACCEPT sperm nucleus NOT generative nucleus IGNORE ovum / egg unqualified	
3. to produce a \{diploid / 2n\} \{zygote / embryo\} ;			
4. idea that one (haploid) male \{gamete / nucleus\} fuses with \{ polar nuclei / diploid endosperm nucleus / fusion nucleus\} ;	4 NOT generative nucleus / polar bodies		

Question Number	Answer	Additional Guidance	Mark
6(a)	1. (overall) increase in pollen count (as the layers get deeper) ; 2. by 28 (au) ; 3. idea that increase is \{greater between 12.5 and $13 \mathrm{~m} /$ smaller between 13 and 13.5 m$\}$; 4. $\{22$ compared to $6 / 18$ compared to 10$\}$; 5. idea that fluctuations are \{greater between 12.5 and 13 $\mathrm{m} /$ smaller between 13 and 13.5 m$\}$;	ACCEPT 12.9 as time of eruption 1 ACCEPT converse 3 ACCEPT increase is \{greater after the eruption / smaller before the eruption\} ACCEPT converse 5 ACCEPT fluctuations are \{greater after the eruption / smaller before the eruption\}	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (b)}$	idea of layers being \{ destroyed / mixed together / eq \} ;	ACCEPT area destroyed / layers are indistinct / not clear / no peat / rocks present	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (c)}$	1. idea that at \{higher / eq\} temperature \{ice melts / water expands\} so level rises ;	$\mathbf{1}$ ACCEPT more evaporation (of water) with increase in temperature so level falls	
2. idea that at \{ lower / eq\} temperatures \{ice forms /eq\} so level falls ;		(2)	

Question Number	Answer	Additional Guidance	Mark
6(d)(i)	1. decrease in pollen count (in peat) after eruption / eq ;		
	2. decrease in sea level after eruption / eq ;	(2)	

Number			
6(d)(ii)	General point: 1. idea of \{fluctuations (in the data) /only a correlation \} ; Pollen data: 2. idea that other factors affected the \{pollen / plants ; OR idea that data only comes from one peat bog ; OR idea that the lowest values before the eruption are lower than th values after the eruption; OR idea that there is data is missing so we \{do not have the comple / are only assuming that values are lower\} ; Sea level data: 3. idea that the sea is in only one area ; OR idea that sea levels were already falling before eruption ; OR no evidence that drop in sea level is due to temperature decrease / eq;	1 ACCEPT in context of either graph 2 ACCEPT idea that the highest values after the eruption are higher than the lowest values after the eruption ;	

Question Number	Answer	Additional Guidance	Mark
7(a)	1. idea that \{body / core / eq\} temperature drops after death ; 2. (rate / extent) of temperature drop depends on \{ambient/eq\} temperature ; 3. idea that ambient temperature \{fluctuates (over time) / does not stay constant ; 4. idea that the sooner after death the more accurate the (estimate of) time of death ;	2 IGNORE body temperature drops to ambient temperature ACCEPT idea that if body temperature has already reached ambient temperature there will be no further fall	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (b) (i)}$	1. correct values read from graph $(37.5 \& 36.27) ;$	Correct answer only scores 2 marks	
	2. (correct subtraction $)=1.23\left({ }^{\circ} \mathrm{C}\right) ;$	2 IGNORE + or - signs ACCEPT ECF for 36.26 to	
		36.28	
		e.g. $36.28=1.22\left({ }^{\circ} \mathrm{C}\right)$	

Question Number	Answer	Additional Guidance	Mark
7(b)(ii)	1. idea that calculations of time of death are based on \{average body temperature $/ 37^{\circ} \mathrm{C}$; ;		
	2. body temperature at time of death will depend on time of day $/$ eq ;		
	3. idea that therefore the calculated value for time of death		
may not be accurate;	3 ACCEPT therefore the estimate will have to be a range of times ACCEPT take into account $1.23^{\circ} \mathrm{C}$ range		
			(2)

Question Number	Answer	Additional Guidance	Mark
*7(c)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. idea of using \{a range / at least five temperatures ; 2. description of temperature control e.g. water bath, incubator ; 3. idea that timing starts when eggs hatch into first instar maggots ; 4. and ends when the (third instar) maggots begin to pupate / eq ; 5. idea that several \{eggs / maggots\} should be used at each temperature ; 6. idea of providing food for maggots ; 7. reference to appropriate controlled variable e.g. humidity. mass of food, species ; 8. reference to plotting data on a graph of temp against time (for first instar to become a pupa);	Emphasis is on clarity of expression 1 ACCEPT a min of $-10^{\circ} \mathrm{C}$ and a \max of $50^{\circ} \mathrm{C}$ 5 ACCEPT minimum of 3 eggs / maggots 7 I GNORE light, pH , amount of food, oxygen	(5)

Question Number	Answer			Additional Guidance	Mark
$8(a)$	1. 2. 3. 4. 5.			Do not piece	
		Fibrous	Globular	together	
		insoluble / large	Soluble / small		
		hydrophobic on outside	hydrophilic on outside		
		mainly secondary structure	3D / folded / compact shape / tertiary / eq	3 ACCEPT chains / straight proteins	
		repeated amino acid sequences	little repetition	I GNORE quaternary	
		structural / eq	enzymes / hormones / eq		
					(3)

Question Number	Answer	Additional Guidance	Mark
*8(b)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. reference to \{post-transcriptional modification / splicing\} (of mRNA) ; 2. reference to spliceosomes ; 3. reference to $\{r e m o v a l / e q\}$ of introns ; 4. idea that different \{number / length\} of exons are put together (in the different sexes) ; 5. idea that the length of the mRNA molecules will be different (for males and females) ; 6. idea that the longer mRNA will have more codons ; 7. and therefore more amino acids will be coded for ; 8. reference to (during) translation ; 9. idea of removal of some amino acids post-translation ;	QWC emphasis is on correct spelling of biological terms 1 ACCEPT post-transcriptional changes 7 ACCEPT converse 8 in the context of Mp7 ACCEPT converse	

